Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72.448
1.
Appl Microbiol Biotechnol ; 108(1): 326, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717487

Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.


Escherichia coli , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Substrate Specificity , Dipeptidases/metabolism , Dipeptidases/genetics , Dipeptidases/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Molecular Docking Simulation , Multigene Family , Hydrogen-Ion Concentration , Dipeptides/metabolism , Temperature , Kinetics
2.
Protein Sci ; 33(6): e5001, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723111

De novo protein design expands the protein universe by creating new sequences to accomplish tailor-made enzymes in the future. A promising topology to implement diverse enzyme functions is the ubiquitous TIM-barrel fold. Since the initial de novo design of an idealized four-fold symmetric TIM barrel, the family of de novo TIM barrels is expanding rapidly. Despite this and in contrast to natural TIM barrels, these novel proteins lack cavities and structural elements essential for the incorporation of binding sites or enzymatic functions. In this work, we diversified a de novo TIM barrel by extending multiple ßα-loops using constrained hallucination. Experimentally tested designs were found to be soluble upon expression in Escherichia coli and well-behaved. Biochemical characterization and crystal structures revealed successful extensions with defined α-helical structures. These diversified de novo TIM barrels provide a framework to explore a broad spectrum of functions based on the potential of natural TIM barrels.


Models, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Crystallography, X-Ray , Protein Folding , Protein Engineering/methods , Proteins/chemistry , Proteins/metabolism
3.
Protein Sci ; 33(6): e4997, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723110

Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3ß3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by ß-ß interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the ß subunit interfaces, with subsequent targeted improvements of the subunits.


Enzyme Stability , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Models, Molecular , Dioxygenases/chemistry , Dioxygenases/metabolism , Dioxygenases/genetics , Temperature , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Hydrogen-Ion Concentration , Electron Transport Complex III
4.
Protein Sci ; 33(6): e5012, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723180

The enormous LysR-type transcriptional regulators (LTTRs), which are diversely distributed amongst prokaryotes, play crucial roles in transcription regulation of genes involved in basic metabolic pathways, virulence and stress resistance. However, the precise transcription activation mechanism of these genes by LTTRs remains to be explored. Here, we determine the cryo-EM structure of a LTTR-dependent transcription activation complex comprising of Escherichia coli RNA polymerase (RNAP), an essential LTTR protein GcvA and its cognate promoter DNA. Structural analysis shows two N-terminal DNA binding domains of GcvA (GcvA_DBD) dimerize and engage the GcvA activation binding sites, presenting the -35 element for specific recognition with the conserved σ70R4. In particular, the versatile C-terminal domain of α subunit of RNAP directly interconnects with GcvA_DBD, σ70R4 and promoter DNA, providing more interfaces for stabilizing the complex. Moreover, molecular docking supports glycine as one potential inducer of GcvA, and single molecule photobleaching experiments kinetically visualize the occurrence of tetrameric GcvA-engaged transcription activation complex as suggested for the other LTTR homologs. Thus, a general model for tetrameric LTTR-dependent transcription activation is proposed. These findings will provide new structural and functional insights into transcription activation of the essential LTTRs.


DNA-Directed RNA Polymerases , Escherichia coli , Transcriptional Activation , Escherichia coli/genetics , Escherichia coli/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Promoter Regions, Genetic , Cryoelectron Microscopy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Models, Molecular , Molecular Docking Simulation , Gene Expression Regulation, Bacterial , Protein Multimerization , Binding Sites
5.
Nat Commun ; 15(1): 3920, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724508

Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.


Biofilms , Biosensing Techniques , Cyclic GMP , Biosensing Techniques/methods , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Signal Transduction , Escherichia coli/metabolism , Escherichia coli/genetics , Second Messenger Systems
6.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Article En | MEDLINE | ID: mdl-38689446

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Escherichia coli , Protein Processing, Post-Translational , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Nanoparticles/chemistry , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism
7.
Appl Microbiol Biotechnol ; 108(1): 329, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727750

Xylanases are key biocatalysts in the degradation of the ß-1,4-glycosidic linkages in the xylan backbone of hemicellulose. These enzymes are potentially applied in a wide range of bioprocessing industries under harsh conditions. Metagenomics has emerged as powerful tools for the bioprospection and discovery of interesting bioactive molecules from extreme ecosystems with unique features, such as high temperatures. In this study, an innovative combination of function-driven screening of a compost metagenomic library and automatic extraction of halo areas with in-house MATLAB functions resulted in the identification of a promising clone with xylanase activity (LP4). The LP4 clone proved to be an effective xylanase producer under submerged fermentation conditions. Sequence and phylogenetic analyses revealed that the xylanase, Xyl4, corresponded to an endo-1,4-ß-xylanase belonging to glycosyl hydrolase family 10 (GH10). When xyl4 was expressed in Escherichia coli BL21(DE3), the enzyme activity increased about 2-fold compared to the LP4 clone. To get insight on the interaction of the enzyme with the substrate and establish possible strategies to improve its activity, the structure of Xyl4 was predicted, refined, and docked with xylohexaose. Our data unveiled, for the first time, the relevance of the amino acids Glu133 and Glu238 for catalysis, and a close inspection of the catalytic site suggested that the replacement of Phe316 by a bulkier Trp may improve Xyl4 activity. Our current findings contribute to enhancing the catalytic performance of Xyl4 towards industrial applications. KEY POINTS: • A GH10 endo-1,4-ß-xylanase (Xyl4) was isolated from a compost metagenomic library • MATLAB's in-house functions were developed to identify the xylanase-producing clones • Computational analysis showed that Glu133 and Glu238 are crucial residues for catalysis.


Composting , Endo-1,4-beta Xylanases , Escherichia coli , Metagenomics , Phylogeny , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Metagenome , Gene Library , Soil Microbiology , Xylans/metabolism , Cloning, Molecular , Fermentation , Gene Expression , Molecular Docking Simulation
8.
Nat Commun ; 15(1): 3945, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730238

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Antimicrobial Cationic Peptides , Molecular Dynamics Simulation , Ribosomes , Ribosomes/metabolism , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Protein Biosynthesis , Binding Sites , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Peptide Termination Factors/metabolism , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Protein Binding , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology
9.
Microb Cell Fact ; 23(1): 130, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711033

BACKGROUND: Cyclic ß-1,2-glucans (CßG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CßG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CßG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CßG. RESULTS: We present the production of CßG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CßG synthesis, transport and succinilation. These strains produce different types of CßG: unsubstituted CßG, anionic CßG and CßG of high size. Unsubstituted CßG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CßG /L in culture medium within 48 h culture. CONCLUSIONS: We have developed a new recombinant bacterial system for the synthesis of cyclic ß-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CßG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CßG availability for further research and the widespread use of these promising molecules across many application fields.


Escherichia coli , beta-Glucans , Escherichia coli/metabolism , Escherichia coli/genetics , beta-Glucans/metabolism
10.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711050

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Biosynthetic Pathways , Escherichia coli , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Glycols/metabolism , Lysine/metabolism , Lysine/biosynthesis , Alcohol Dehydrogenase/metabolism , Transaminases/metabolism , Transaminases/genetics , Carboxy-Lyases/metabolism
11.
Elife ; 122024 May 15.
Article En | MEDLINE | ID: mdl-38747577

Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.


Escherichia coli , Iron , Lipocalin-2 , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Mice , Iron/metabolism , Neoplasms/therapy , Neoplasms/immunology , Enterobactin/metabolism , Tumor Microenvironment , Cell Line, Tumor
12.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743623

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Escherichia coli , Iron , Manganese , Manganese/metabolism , Iron/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Saccharomyces cerevisiae/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Zinc/metabolism , Lactococcus lactis/enzymology , Lactococcus lactis/metabolism , Oxidation-Reduction , Metals/metabolism
13.
Proc Natl Acad Sci U S A ; 121(21): e2400260121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743624

We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.


Proteome , Proteome/metabolism , Humans , Protein Interaction Mapping/methods , Models, Molecular , Escherichia coli/metabolism , Escherichia coli/genetics , Databases, Protein , Protein Binding , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Proteins/chemistry , Proteins/metabolism , Sequence Alignment
14.
Nat Commun ; 15(1): 4087, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744842

Adaptive laboratory evolution experiments provide a controlled context in which the dynamics of selection and adaptation can be followed in real-time at the single-nucleotide level. And yet this precision introduces hundreds of degrees-of-freedom as genetic changes accrue in parallel lineages over generations. On short timescales, physiological constraints have been leveraged to provide a coarse-grained view of bacterial gene expression characterized by a small set of phenomenological parameters. Here, we ask whether this same framework, operating at a level between genotype and fitness, informs physiological changes that occur on evolutionary timescales. Using a strain adapted to growth in glucose minimal medium, we find that the proteome is substantially remodeled over 40 000 generations. The most striking change is an apparent increase in enzyme efficiency, particularly in the enzymes of lower-glycolysis. We propose that deletion of metabolic flux-sensing regulation early in the adaptation results in increased enzyme saturation and can account for the observed proteome remodeling.


Escherichia coli , Proteome , Proteome/metabolism , Proteome/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Directed Molecular Evolution , Glucose/metabolism , Adaptation, Physiological/genetics , Gene Expression Regulation, Bacterial , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Glycolysis/genetics
15.
J Agric Food Chem ; 72(19): 11029-11040, 2024 May 15.
Article En | MEDLINE | ID: mdl-38699920

l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.


Escherichia coli , Fermentation , Metabolic Engineering , Phenylalanine , Escherichia coli/genetics , Escherichia coli/metabolism , Phenylalanine/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biosynthetic Pathways
16.
Biotechnol J ; 19(5): e2300581, 2024 May.
Article En | MEDLINE | ID: mdl-38719587

Human interleukin-3 (IL3) is a multifunctional cytokine essential for both clinical and biomedical research endeavors. However, its production in Escherichia coli has historically been challenging due to its aggregation into inclusion bodies, requiring intricate solubilization and refolding procedures. This study introduces an innovative approach employing two chaperone proteins, maltose binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a'), as N-terminal fusion tags. Histidine tag (H) was added at the beginning of each chaperone protein gene for easy purification. This fusion of chaperone proteins significantly improved IL3 solubility across various E. coli strains and temperature conditions, eliminating the need for laborious refolding procedures. Following expression optimization, H-PDIb'a'-IL3 was purified using two chromatographic methods, and the subsequent removal of the H-PDIb'a' tag yielded high-purity IL3. The identity of the purified protein was confirmed through liquid chromatography coupled with tandem mass spectrometry analysis. Biological activity assays using human erythroleukemia TF-1 cells revealed a unique two-step stimulation pattern for both purified IL3 and the H-PDIb'a'-IL3 fusion protein, underscoring the protein's functional integrity and revealing novel insights into its cellular interactions. This study advances the understanding of IL3 expression and activity while introducing novel considerations for protein fusion strategies.


Escherichia coli , Interleukin-3 , Protein Disulfide-Isomerases , Recombinant Fusion Proteins , Humans , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Interleukin-3/metabolism , Interleukin-3/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Cell Line, Tumor , Solubility
17.
Biotechnol J ; 19(5): e2400023, 2024 May.
Article En | MEDLINE | ID: mdl-38719589

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Anti-Bacterial Agents , Escherichia coli , Light , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Optogenetics/methods , Gene Expression Regulation, Bacterial/drug effects , Ampicillin/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Streptomycin/pharmacology , Blue Light
18.
Biotechnol J ; 19(5): e2300664, 2024 May.
Article En | MEDLINE | ID: mdl-38719620

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Escherichia coli , Hydrogen Peroxide , Sarcosine Oxidase , Hydrogen Peroxide/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Sarcosine Oxidase/metabolism , Sarcosine Oxidase/genetics , Sarcosine Oxidase/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Sarcosine/metabolism , Sarcosine/analogs & derivatives
19.
Proc Natl Acad Sci U S A ; 121(20): e2316271121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38709929

Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.


Escherichia coli , Stress, Physiological , Escherichia coli/genetics , Escherichia coli/metabolism , Stress, Physiological/genetics , Mutation , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Transcriptome , Gene Expression Regulation, Bacterial , Adaptation, Physiological/genetics , Loss of Function Mutation
20.
World J Microbiol Biotechnol ; 40(6): 183, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722449

Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.


Enzyme Stability , Escherichia coli , Pyrococcus abyssi , Recombinant Fusion Proteins , Temperature , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Pyrococcus abyssi/genetics , Pyrococcus abyssi/enzymology , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Genetic Vectors/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , SUMO-1 Protein/chemistry , Cloning, Molecular , Solubility
...